Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
iScience ; 26(6): 106955, 2023 Jun 16.
Article in English | MEDLINE | ID: covidwho-2328292

ABSTRACT

Several antibody therapeutics have been developed against SARS-CoV-2; however, they have attenuated neutralizing ability against variants. In this study, we generated multiple broadly neutralizing antibodies from B cells of convalescents, by using two types of receptor-binding domains, Wuhan strain and the Gamma variant as bait. From 172 antibodies generated, six antibodies neutralized all strains prior to the Omicron variant, and the five antibodies were able to neutralize some of the Omicron sub-strains. Structural analysis showed that these antibodies have a variety of characteristic binding modes, such as ACE2 mimicry. We subjected a representative antibody to the hamster infection model after introduction of the N297A modification, and observed a dose-dependent reduction of the lung viral titer, even at a dose of 2 mg/kg. These results demonstrated that our antibodies have certain antiviral activity as therapeutics, and highlighted the importance of initial cell-screening strategy for the efficient development of therapeutic antibodies.

2.
J Med Virol ; 95(5): e28788, 2023 05.
Article in English | MEDLINE | ID: covidwho-2326003

ABSTRACT

Diagnosis by rapid antigen tests (RATs) is useful for early initiation of antiviral treatment. Because RATs are easy to use, they can be adapted for self-testing. Several kinds of RATs approved for such use by the Japanese regulatory authority are available from drug stores and websites. Most RATs for COVID-19 are based on antibody detection of the SARS-CoV-2 N protein. Since Omicron and its subvariants have accumulated several amino acid substitutions in the N protein, such amino acid changes might affect the sensitivity of RATs. Here, we investigated the sensitivity of seven RATs available in Japan, six of which are approved for public use and one of which is approved for clinical use, for the detection of BA.5, BA.2.75, BF.7, XBB.1, and BQ.1.1, as well as the delta variant (B.1.627.2). All tested RATs detected the delta variant with a detection level between 7500 and 75 000 pfu per test, and all tested RATs showed similar sensitivity to the Omicron variant and its subvariants (BA.5, BA.2.75, BF.7, XBB.1, and BQ.1.1). Human saliva did not reduce the sensitivity of the RATs tested. Espline SARS-CoV-2 N showed the highest sensitivity followed by Inspecter KOWA SARS-CoV-2 and V Trust SARS-CoV-2 Ag. Since the RATs failed to detect low levels of infectious virus, individuals whose specimens contained less infectious virus than the detection limit would be considered negative. Therefore, it is important to note that RATs may miss individuals shedding low levels of infectious virus.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , Amino Acid Substitution , Antiviral Agents
3.
EBioMedicine ; 91: 104561, 2023 May.
Article in English | MEDLINE | ID: covidwho-2295239

ABSTRACT

BACKGROUND: The SARS-CoV-2 delta (B.1.617.2 lineage) variant was first identified at the end of 2020 and possessed two unique amino acid substitutions in its spike protein: S-P681R, at the S1/S2 cleavage site, and S-D950N, in the HR1 of the S2 subunit. However, the roles of these substitutions in virus phenotypes have not been fully characterized. METHODS: We used reverse genetics to generate Wuhan-D614G viruses with these substitutions and delta viruses lacking these substitutions and explored how these changes affected their viral characteristics in vitro and in vivo. FINDINGS: S-P681R enhanced spike cleavage and membrane fusion, whereas S-D950N slightly promoted membrane fusion. Although S-681R reduced the virus replicative ability especially in VeroE6 cells, neither substitution affected virus replication in Calu-3 cells and hamsters. The pathogenicity of all recombinant viruses tested in hamsters was slightly but not significantly affected. INTERPRETATION: Our observations suggest that the S-P681R and S-D950N substitutions alone do not increase virus pathogenicity, despite of their enhancement of spike cleavage or fusogenicity. FUNDING: A full list of funding bodies that contributed to this study can be found under Acknowledgments.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Cricetinae , Virulence/genetics , Membrane Fusion
4.
Influenza and other respiratory viruses ; 17(3), 2023.
Article in English | EuropePMC | ID: covidwho-2259783

ABSTRACT

Background Reverse genetics systems to rescue viruses from modified DNA are useful tools to investigate the molecular mechanisms of viruses. The COVID‐19 pandemic prompted the development of several reverse genetics systems for SARS‐CoV‐2. The circular polymerase extension reaction (CPER) method enables the rapid generation of recombinant SARS‐CoV‐2;however, such PCR‐based approaches could introduce unwanted mutations due to PCR errors. Methods To compare the accuracy of CPER and a classic reverse genetics method using bacterial artificial chromosome (BAC), SARS‐CoV‐2 Wuhan/Hu‐1/2019 was generated five times using BAC and five times using CPER. These 10 independent virus stocks were then deep sequencing, and the number of substitutions for which the frequency was greater than 10% was counted. Results No nucleotide substitutions with a frequency of greater than 10% were observed in all five independent virus stocks generated by the BAC method. In contrast, three to five unwanted nucleotide substitutions with a frequency of more than 10% were detected in four of the five virus stocks generated by the CPER. Furthermore, four substitutions with frequencies greater than 20% were generated in three virus stocks by using the CPER. Conclusions We found that the accuracy of the CPER method is lower than that of the BAC method. Our findings suggest care should be used when employing the CPER method.

6.
Influenza Other Respir Viruses ; 17(3): e13109, 2023 03.
Article in English | MEDLINE | ID: covidwho-2259784

ABSTRACT

Background: Reverse genetics systems to rescue viruses from modified DNA are useful tools to investigate the molecular mechanisms of viruses. The COVID-19 pandemic prompted the development of several reverse genetics systems for SARS-CoV-2. The circular polymerase extension reaction (CPER) method enables the rapid generation of recombinant SARS-CoV-2; however, such PCR-based approaches could introduce unwanted mutations due to PCR errors. Methods: To compare the accuracy of CPER and a classic reverse genetics method using bacterial artificial chromosome (BAC), SARS-CoV-2 Wuhan/Hu-1/2019 was generated five times using BAC and five times using CPER. These 10 independent virus stocks were then deep sequencing, and the number of substitutions for which the frequency was greater than 10% was counted. Results: No nucleotide substitutions with a frequency of greater than 10% were observed in all five independent virus stocks generated by the BAC method. In contrast, three to five unwanted nucleotide substitutions with a frequency of more than 10% were detected in four of the five virus stocks generated by the CPER. Furthermore, four substitutions with frequencies greater than 20% were generated in three virus stocks by using the CPER. Conclusions: We found that the accuracy of the CPER method is lower than that of the BAC method. Our findings suggest care should be used when employing the CPER method.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Chromosomes, Artificial, Bacterial/genetics , Pandemics , Reverse Genetics/methods
7.
Nat Commun ; 14(1): 1620, 2023 03 23.
Article in English | MEDLINE | ID: covidwho-2284921

ABSTRACT

The prevalence of the Omicron subvariant BA.2.75 rapidly increased in India and Nepal during the summer of 2022, and spread globally. However, the virological features of BA.2.75 are largely unknown. Here, we evaluated the replicative ability and pathogenicity of BA.2.75 clinical isolates in Syrian hamsters. Although we found no substantial differences in weight change among hamsters infected with BA.2, BA.5, or BA.2.75, the replicative ability of BA.2.75 in the lungs is higher than that of BA.2 and BA.5. Of note, BA.2.75 causes focal viral pneumonia in hamsters, characterized by patchy inflammation interspersed in alveolar regions, which is not observed in BA.5-infected hamsters. Moreover, in competition assays, BA.2.75 replicates better than BA.5 in the lungs of hamsters. These results suggest that BA.2.75 can cause more severe respiratory disease than BA.5 and BA.2 in a hamster model and should be closely monitored.


Subject(s)
COVID-19 , Animals , Cricetinae , SARS-CoV-2 , Biological Assay , DNA Replication , India , Mesocricetus
11.
Clinical Microbiology ; 49(6):659-664, 2022.
Article in Japanese | Ichushi | ID: covidwho-2164915
13.
Jpn J Infect Dis ; 75(6): 608-611, 2022 Nov 22.
Article in English | MEDLINE | ID: covidwho-2145167

ABSTRACT

Immunocompromised patients are more likely to develop severe COVID-19, and exhibit high mortality. It is also hypothesized that chronic infection in these patients can be a risk factor for developing new variants. We describe a patient with prolonged active infection of COVID-19 who became infected during treatment with an anti-CD20 antibody (obinutuzumab) for follicular lymphoma. This patient had persistent RT-PCR positivity and live virus isolation for nine months despite treatment with remdesivir and other potential antiviral therapies. The computed tomography image of the chest showed that the viral pneumonia repeatedly appeared and disappeared in different lobes, as if a new infection had occurred continuously. The patient's SARS-CoV-2 antibody titer was negative throughout the illness, even after two doses of the BNT162b2 mRNA vaccine were administered in the seventh month of infection. A combination of monoclonal antibody therapy against COVID-19 (casirivimab and imdevimab) and antivirals resulted in negative RT-PCR results, and the virus was no longer isolated. The patient was clinically cured. During the 9-month active infection period, no fixed mutations in the spike (S) protein were detected, and the in vitro susceptibility to remdesivir was retained. Therapeutic administration of anti-SARS-CoV-2 monoclonal antibodies is essential in immunocompromised patients. Therefore, measures to prevent resistance against these key drugs are urgently needed.


Subject(s)
COVID-19 Drug Treatment , Lymphoma, Follicular , Humans , Lymphoma, Follicular/drug therapy , Lymphoma, Follicular/pathology , BNT162 Vaccine , SARS-CoV-2 , Antibodies, Viral
14.
iScience ; 25(12): 105596, 2022 Dec 22.
Article in English | MEDLINE | ID: covidwho-2120399

ABSTRACT

The use of therapeutic neutralizing antibodies against SARS-CoV-2 infection has been highly effective. However, there remain few practical antibodies against viruses that are acquiring mutations. In this study, we created 494 monoclonal antibodies from patients with COVID-19-convalescent, and identified antibodies that exhibited the comparable neutralizing ability to clinically used antibodies in the neutralization assay using pseudovirus and authentic virus including variants of concerns. These antibodies have different profiles against various mutations, which were confirmed by cell-based assay and cryo-electron microscopy. To prevent antibody-dependent enhancement, N297A modification was introduced. Our antibodies showed a reduction of lung viral RNAs by therapeutic administration in a hamster model. In addition, an antibody cocktail consisting of three antibodies was also administered therapeutically to a macaque model, which resulted in reduced viral titers of swabs and lungs and reduced lung tissue damage scores. These results showed that our antibodies have sufficient antiviral activity as therapeutic candidates.

16.
Nature ; 2022 Nov 02.
Article in English | MEDLINE | ID: covidwho-2096734

ABSTRACT

The BA.2 sublineage of the SARS-CoV-2 Omicron variant has become dominant in most countries around the world; however, the prevalence of BA.4 and BA.5 is increasing rapidly in several regions. BA.2 is less pathogenic in animal models than previously circulating variants of concern1-4. Compared with BA.2, however, BA.4 and BA.5 possess additional substitutions in the spike protein, which play a key role in viral entry, raising concerns that the replication capacity and pathogenicity of BA.4 and BA.5 are higher than those of BA.2. Here we have evaluated the replicative ability and pathogenicity of BA.4 and BA.5 isolates in wild-type Syrian hamsters, human ACE2 (hACE2) transgenic hamsters and hACE2 transgenic mice. We have observed no obvious differences among BA.2, BA.4 and BA.5 isolates in growth ability or pathogenicity in rodent models, and less pathogenicity compared to a previously circulating Delta (B.1.617.2 lineage) isolate. In addition, in vivo competition experiments revealed that BA.5 outcompeted BA.2 in hamsters, whereas BA.4 and BA.2 exhibited similar fitness. These findings suggest that BA.4 and BA.5 clinical isolates have similar pathogenicity to BA.2 in rodents and that BA.5 possesses viral fitness superior to that of BA.2.

17.
Emerg Infect Dis ; 28(11): 2198-2205, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2054906

ABSTRACT

Japan has reported a relatively small number of COVID-19 cases. Because not all infected persons receive diagnostic tests for COVID-19, the reported number must be lower than the actual number of infections. We assessed SARS-CoV-2 seroprevalence by analyzing >60,000 samples collected in Japan (Tokyo Metropolitan Area and Hokkaido Prefecture) during February 2020-March 2022. The results showed that ≈3.8% of the population had become seropositive by January 2021. The seroprevalence increased with the administration of vaccinations; however, among the elderly, seroprevalence was not as high as the vaccination rate. Among children, who were not eligible for vaccination, infection was spread during the epidemic waves caused by the SARS-CoV-2 Delta and Omicron variants. Nevertheless, seroprevalence for unvaccinated children <5 years of age was as low as 10% as of March 2022. Our study underscores the low incidence of SARS-CoV-2 infection in Japan and the effects of vaccination on immunity at the population level.


Subject(s)
COVID-19 , SARS-CoV-2 , Child , Humans , Aged , COVID-19/epidemiology , COVID-19/prevention & control , Japan/epidemiology , Seroepidemiologic Studies , Antibodies, Viral , Vaccination
19.
Intern Med ; 61(11): 1681-1686, 2022 Jun 01.
Article in English | MEDLINE | ID: covidwho-1951862

ABSTRACT

Objective Coronavirus disease (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread globally. Although the relationship between anti-SARS-CoV-2 immunoglobulin G (IgG) antibodies and COVID-19 severity has been reported, information is lacking regarding the seropositivity of patients with particular types of diseases, including hematological diseases. Methods In this single-center, retrospective study, we compared SARS-CoV-2 IgG positivity between patients with hematological diseases and those with non-hematological diseases. Results In total, 77 adult COVID-19 patients were enrolled. Of these, 30 had hematological disorders, and 47 had non-hematological disorders. The IgG antibody against the receptor-binding domain of the spike protein was detected less frequently in patients with hematological diseases (60.0%) than in those with non-hematological diseases (91.5%; p=0.029). Rituximab use was significantly associated with seronegativity (p=0.010). Conclusion Patients with hematological diseases are less likely to develop anti-SARS-CoV-2 antibodies than those with non-hematological diseases, which may explain the poor outcomes of COVID-19 patients in this high-risk group.


Subject(s)
COVID-19 , Hematologic Diseases , Adult , Antibodies, Viral , Hematologic Diseases/complications , Hematologic Diseases/epidemiology , Humans , Immunoglobulin G , Immunoglobulin M , Japan/epidemiology , Retrospective Studies , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL